Files
2019/days/17.go
Parnic 1f27585231 Day 17 solution
My initial idea for a solution ended up working out great, but I had a hard time getting it all down on "paper," so to speak, so this is probably 200 lines of code too many, but it definitely does exactly what I envisioned (and quickly) even if it's not the most succinct.
2022-07-11 09:31:26 -05:00

423 lines
10 KiB
Go

package days
import (
"fmt"
"strings"
u "parnic.com/aoc2019/utilities"
)
type camViewCellType int
type botFacing int
type day17Grid [][]camViewCellType
const (
cellTypeScaffold camViewCellType = iota
cellTypeOpen
cellTypeInvalid
)
const (
botFacingUp botFacing = iota
botFacingLeft
botFacingDown
botFacingRight
botFacingFirst = botFacingUp
botFacingLast = botFacingRight
)
const (
dirLeft = 1
dirRight = -1
maxInstructionSetLength = 20
)
var (
day17AdjacentOffsets = []u.Vec2i{
{X: -1, Y: 0},
{X: 1, Y: 0},
{X: 0, Y: -1},
{X: 0, Y: 1},
}
)
type Day17 struct {
program u.IntcodeProgram
}
func (d *Day17) Parse() {
d.program = u.LoadIntcodeProgram("17p")
}
func (d Day17) Num() int {
return 17
}
func (currentDir botFacing) getNewFacingDir(turnDir int) botFacing {
currentDir += botFacing(turnDir)
if currentDir < botFacingFirst {
currentDir = botFacingLast
} else if currentDir > botFacingLast {
currentDir = botFacingFirst
}
return currentDir
}
func (grid day17Grid) Draw(botLocation u.Vec2i, botFacingDir botFacing, endLocation u.Vec2i) {
for y := range grid {
for x := range grid[y] {
switch grid[y][x] {
case cellTypeOpen:
fmt.Print(" ")
case cellTypeScaffold:
char := "█"
color := u.ColorBlack
if botLocation.X == x && botLocation.Y == y {
switch botFacingDir {
case botFacingUp:
char = "^"
case botFacingLeft:
char = "<"
case botFacingDown:
char = "v"
case botFacingRight:
char = ">"
}
} else if endLocation.X == x && endLocation.Y == y {
char = "@"
} else {
color = u.ColorWhite
}
fmt.Printf("%s%s%s%s", u.BackgroundWhite, color, char, u.TextReset)
}
}
fmt.Println()
}
}
func (grid day17Grid) getAdjacentScaffolds(y, x int) []u.Vec2i {
retval := make([]u.Vec2i, 0)
for _, offset := range day17AdjacentOffsets {
offY := y + offset.Y
offX := x + offset.X
if offY < 0 || offY >= len(grid) ||
offX < 0 || offX >= len(grid[0]) {
continue
}
if grid[offY][offX] == cellTypeScaffold {
retval = append(retval, u.Vec2i{X: offX, Y: offY})
}
}
return retval
}
func (grid day17Grid) forEachCellOfType(t camViewCellType, f func(y, x int)) {
for y := range grid {
for x := range grid[y] {
if grid[y][x] == t {
f(y, x)
}
}
}
}
func (grid *day17Grid) processGridUpdate(y int, rVal rune, currBotLocation u.Vec2i, currBotFacing botFacing) (int, u.Vec2i, botFacing) {
grid.appendValue(rVal, y)
switch rVal {
case '\n':
y++
case '^', '<', 'v', '>':
currBotLocation = u.Vec2i{X: len((*grid)[y]) - 1, Y: y}
switch rVal {
case '^':
currBotFacing = botFacingUp
case '<':
currBotFacing = botFacingLeft
case 'v':
currBotFacing = botFacingDown
case '>':
currBotFacing = botFacingRight
}
}
return y, currBotLocation, currBotFacing
}
func (grid day17Grid) getCellTypeInDirection(y, x int, facingDir botFacing) (camViewCellType, int, int) {
newX := x
newY := y
switch facingDir {
case botFacingUp:
newY--
case botFacingLeft:
newX--
case botFacingDown:
newY++
case botFacingRight:
newX++
}
if newY < 0 || newY >= len(grid) || newX < 0 || newX >= len(grid[0]) {
return cellTypeInvalid, newY, newX
}
return grid[newY][newX], newY, newX
}
func (grid *day17Grid) appendValue(rVal rune, row int) {
ensureCapacity := func(y int) {
for len(*grid) <= y {
*grid = append(*grid, make([]camViewCellType, 0))
}
}
switch rVal {
case '#':
ensureCapacity(row)
(*grid)[row] = append((*grid)[row], cellTypeScaffold)
case '.':
ensureCapacity(row)
(*grid)[row] = append((*grid)[row], cellTypeOpen)
case '^', '<', 'v', '>':
ensureCapacity(row)
(*grid)[row] = append((*grid)[row], cellTypeScaffold)
}
}
func (grid day17Grid) findEndLocation(botLocation u.Vec2i) u.Vec2i {
var endLocation u.Vec2i
grid.forEachCellOfType(cellTypeScaffold, func(y, x int) {
if numSurrounding := len(grid.getAdjacentScaffolds(y, x)); numSurrounding == 1 {
if botLocation.X != x || botLocation.Y != y {
endLocation = u.Vec2i{X: x, Y: y}
}
}
})
return endLocation
}
func (grid day17Grid) getTurnDirectionFromCorner(pos u.Vec2i, botFacingDir botFacing) (int, string) {
adj := grid.getAdjacentScaffolds(pos.Y, pos.X)
turnDirection := 0
// this is so awful. i'm sure there's a better way, but i'm tired.
if botFacingDir == botFacingUp || botFacingDir == botFacingDown {
if u.ArrayContains(adj, u.Vec2i{X: pos.X - 1, Y: pos.Y}) {
if botFacingDir == botFacingUp {
turnDirection = dirLeft
} else if botFacingDir == botFacingDown {
turnDirection = dirRight
}
} else if u.ArrayContains(adj, u.Vec2i{X: pos.X + 1, Y: pos.Y}) {
if botFacingDir == botFacingUp {
turnDirection = dirRight
} else if botFacingDir == botFacingDown {
turnDirection = dirLeft
}
}
} else {
if u.ArrayContains(adj, u.Vec2i{X: pos.X, Y: pos.Y - 1}) {
if botFacingDir == botFacingLeft {
turnDirection = dirRight
} else if botFacingDir == botFacingRight {
turnDirection = dirLeft
}
} else if u.ArrayContains(adj, u.Vec2i{X: pos.X, Y: pos.Y + 1}) {
if botFacingDir == botFacingLeft {
turnDirection = dirLeft
} else if botFacingDir == botFacingRight {
turnDirection = dirRight
}
}
}
dirAscii := "L"
if turnDirection == dirRight {
dirAscii = "R"
}
return turnDirection, dirAscii
}
func buildInstructionString(instructions []string) string {
workingInstructions := make([]string, len(instructions))
copy(workingInstructions, instructions)
minimumRecurrence := 3
initialInstructionSubsetLen := 4
instructionStr := strings.Join(workingInstructions, ",")
progs := make([][]string, 3)
for i := range progs {
numFound := minimumRecurrence
subLen := initialInstructionSubsetLen
for numFound >= minimumRecurrence {
numFound = 1
instructionSubset := strings.Join(workingInstructions[0:subLen], ",")
if len(instructionSubset) > maxInstructionSetLength {
break
}
for x := len(instructionSubset); x <= len(instructionStr)-len(instructionSubset); x++ {
if instructionStr[x:x+len(instructionSubset)] == instructionSubset {
numFound++
x += len(instructionSubset)
}
}
if numFound >= minimumRecurrence {
subLen += 2
}
}
if numFound < minimumRecurrence {
subLen -= 2
}
progs[i] = make([]string, subLen)
copy(progs[i], workingInstructions[0:subLen])
instructionStr = strings.ReplaceAll(instructionStr, strings.Join(progs[i], ","), "")
instructionStr = strings.TrimPrefix(strings.ReplaceAll(instructionStr, ",,", ","), ",")
if len(instructionStr) == 0 {
workingInstructions = nil
} else {
workingInstructions = strings.Split(instructionStr, ",")
}
}
if workingInstructions != nil {
panic("failed to use up all instructions")
}
programStr := strings.Join(instructions, ",")
for i := range progs {
programStr = strings.ReplaceAll(programStr, strings.Join(progs[i], ","), fmt.Sprintf("%c", 'A'+i))
}
sb := strings.Builder{}
sb.WriteString(programStr)
sb.WriteRune('\n')
for i := range progs {
sb.WriteString(strings.Join(progs[i], ","))
sb.WriteRune('\n')
}
runDebug := 'n'
sb.WriteRune(runDebug)
sb.WriteRune('\n')
return sb.String()
}
func (grid day17Grid) solvePath(botLocation u.Vec2i, botFacingDir botFacing) string {
instructions := make([]string, 0)
pos := botLocation
endLocation := grid.findEndLocation(botLocation)
for {
if pos == endLocation {
break
}
turnDirection, dirAscii := grid.getTurnDirectionFromCorner(pos, botFacingDir)
if turnDirection == 0 {
panic("at an invalid location somehow")
}
instructions = append(instructions, dirAscii)
botFacingDir = botFacingDir.getNewFacingDir(turnDirection)
numMoved := 0
for {
cell, newY, newX := grid.getCellTypeInDirection(pos.Y, pos.X, botFacingDir)
if cell != cellTypeScaffold {
break
}
pos.X = newX
pos.Y = newY
numMoved++
}
instructions = append(instructions, fmt.Sprintf("%d", numMoved))
}
return buildInstructionString(instructions)
}
func (d *Day17) Part1() string {
grid := day17Grid{}
y := 0
var botLocation u.Vec2i
var botFacingDir botFacing
d.program.RunIn(func(inputStep int) int64 {
return 0
}, func(val int64, state u.IntcodeProgramState) {
rVal := rune(val)
y, botLocation, botFacingDir = grid.processGridUpdate(y, rVal, botLocation, botFacingDir)
})
alignmentParameterTotal := 0
grid.forEachCellOfType(cellTypeScaffold, func(y, x int) {
if numSurrounding := len(grid.getAdjacentScaffolds(y, x)); numSurrounding == 4 {
alignmentParameterTotal += y * x
}
})
// endLocation := grid.findEndLocation(botLocation)
// grid.Draw(botLocation, botFacingDir, endLocation)
return fmt.Sprintf("Alignment parameter sum: %s%d%s", u.TextBold, alignmentParameterTotal, u.TextReset)
}
func (d *Day17) Part2() string {
beforeGrid := day17Grid{}
var beforeBotLocation u.Vec2i
var beforeBotFacing botFacing
afterGrid := day17Grid{}
var afterBotLocation u.Vec2i
var afterBotFacing botFacing
d.program.Reset()
d.program.SetMemory(0, 2)
row := 0
var outputState int
var lastOutput int64
var instructionStr string
d.program.RunIn(func(inputStep int) int64 {
return int64(instructionStr[inputStep-1])
}, func(val int64, state u.IntcodeProgramState) {
rVal := rune(val)
if outputState == 0 {
row, beforeBotLocation, beforeBotFacing = beforeGrid.processGridUpdate(row, rVal, beforeBotLocation, beforeBotFacing)
} else if outputState == 2 {
row, afterBotLocation, afterBotFacing = afterGrid.processGridUpdate(row, rVal, afterBotLocation, afterBotFacing)
}
if rVal == '\n' && lastOutput == '\n' {
if outputState == 0 {
instructionStr = beforeGrid.solvePath(beforeBotLocation, beforeBotFacing)
}
outputState++
row = 0
}
lastOutput = val
})
// fmt.Println("initial grid:")
// beforeEndLocation := beforeGrid.findEndLocation(beforeBotLocation)
// beforeGrid.Draw(beforeBotLocation, beforeBotFacing, beforeEndLocation)
// fmt.Println("completed grid:")
// afterEndLocation := afterGrid.findEndLocation(afterBotLocation)
// afterGrid.Draw(afterBotLocation, afterBotFacing, afterEndLocation)
return fmt.Sprintf("Dust collected after traveling all paths: %s%d%s", u.TextBold, lastOutput, u.TextReset)
}