Files
2019/days/15.go
Parnic f0be3f9f98 Day 15 solution
I wanted to use something like a right-hand wall solver, but the fact that you don't know the maze ahead of time and you can't see what something is without trying to move into it made that difficult. This semi-brute-force approach works well enough. I originally stopped as soon as I found the oxygen system and figured out the shortest path, but once I submitted that answer and saw that part 2 wanted the full map explored, I figured I might as well just fill the map all at once.

I think I would have been stuck on part 1 longer if my input set didn't happen to find the goal system fairly easily (or maybe my debug drawing helped me work through it with that input set specifically, I'm not sure) since a different input set required some tweaking to the max-visited threshold in order to find things that my first input set found with a lower setting.

Regardless, I'm pretty excited that I came to Trémaux's algorithm, more or less, on my own. I went to Wikipedia to see if I was on the right track and lo and behold, I had come to a version of it myself.

Part 2 turned out easier than I originally thought. I suspected this solution would work, but wasn't completely confident. It can only work for the type of maze used by this problem (where there are no loops of open areas). I'm just glad I didn't need A* or anything.

Oh, and this `stringer` command that allows debug printing of enums can be installed with `go install golang.org/x/tools/cmd/stringer@latest`
2022-06-29 08:11:33 -05:00

333 lines
7.8 KiB
Go

package days
//go:generate stringer -type=cellStatus,responseType,dirType -output=15_types_string.go
import (
"fmt"
"math"
"sort"
u "parnic.com/aoc2019/utilities"
)
type point u.Pair[int, int]
type cellStatus int
type responseType int
type dirType int
const (
cellStatusUnknown cellStatus = iota
cellStatusWall
cellStatusOpen
cellStatusGoal
)
const (
responseWall responseType = iota
responseSuccess
responseFoundGoal
)
const maxVisited = 3
const (
dirNorth dirType = iota + 1
dirSouth
dirWest
dirEast
dirFirst = dirNorth
dirLast = dirEast
)
var dirOrders = [][]dirType{
{dirNorth, dirSouth, dirWest, dirEast},
{dirSouth, dirWest, dirEast, dirNorth},
{dirWest, dirEast, dirNorth, dirSouth},
{dirEast, dirNorth, dirSouth, dirWest},
}
// turned out to be unnecessary on multiple datasets i tried. increases the iterations 6x
// var dirOrders = u.GetPermutations(dirNorth, dirSouth, dirWest, dirEast)
type visitedStatus struct {
timesVisited int
distanceFromStart int
}
type Day15 struct {
program u.IntcodeProgram
grid map[point]cellStatus
visited map[point]*visitedStatus
shortestPath []point
pos point
goalPos point
}
func (d *Day15) Parse() {
d.program = u.LoadIntcodeProgram("15p")
d.grid = map[point]cellStatus{
{First: 0, Second: 0}: cellStatusOpen,
}
d.visited = map[point]*visitedStatus{
{First: 0, Second: 0}: {timesVisited: 1},
}
d.shortestPath = []point{{}}
}
func (d Day15) Num() int {
return 15
}
func (d Day15) getPointInDirection(pos point, dir dirType) point {
target := pos
switch dir {
case dirNorth:
target.First--
case dirSouth:
target.First++
case dirWest:
target.Second--
case dirEast:
target.Second++
}
return target
}
func (d Day15) getCellTypeInDirection(pos point, dir dirType) (cellStatus, point) {
target := d.getPointInDirection(pos, dir)
return d.grid[target], target
}
func (d Day15) getAdjacentCellsOfType(pos point, cellType cellStatus) []point {
points := make([]point, 0, 4)
for i := dirFirst; i <= dirLast; i++ {
adjacentCell := d.getPointInDirection(pos, i)
if d.grid[adjacentCell] == cellType {
points = append(points, adjacentCell)
}
}
return points
}
func (d Day15) getDirToNextCellType(pos point, t cellStatus, maxNumVisited int, dirs []dirType) (dirType, point, error) {
for _, dir := range dirs {
cellInDirection, targetCell := d.getCellTypeInDirection(pos, dir)
if cellInDirection == t {
_, visitedTargetExists := d.visited[targetCell]
foundUnknown := t == cellStatusUnknown && !visitedTargetExists
foundOther := t != cellStatusUnknown && visitedTargetExists && d.visited[targetCell].timesVisited <= maxNumVisited
if foundUnknown || foundOther {
return dir, targetCell, nil
}
}
}
return dirFirst, point{}, fmt.Errorf("no %v tiles around %v", t, pos)
}
func (d *Day15) Draw() {
min := point{First: math.MaxInt, Second: math.MaxInt}
max := point{First: math.MinInt, Second: math.MinInt}
for p := range d.grid {
if p.First < min.First {
min.First = p.First
}
if p.First > max.First {
max.First = p.First
}
if p.Second < min.Second {
min.Second = p.Second
}
if p.Second > max.Second {
max.Second = p.Second
}
}
for x := min.First; x <= max.First; x++ {
for y := min.Second; y <= max.Second; y++ {
p := point{First: x, Second: y}
switch d.grid[p] {
case cellStatusGoal:
fmt.Printf("%s@%s", u.ColorBrightGreen, u.TextReset)
case cellStatusOpen:
if p == d.pos {
fmt.Print(u.BackgroundBrightRed)
} else if x == 0 && y == 0 {
fmt.Print(u.BackgroundYellow)
} else if u.ArrayContains(d.shortestPath, p) {
fmt.Print(u.BackgroundGreen)
} else if d.visited[p] != nil && d.visited[p].timesVisited > maxVisited {
fmt.Print(u.ColorYellow)
fmt.Print(u.BackgroundBlack)
} else if d.visited[p] != nil && d.visited[p].timesVisited > 1 {
fmt.Print(u.BackgroundMagenta)
} else {
fmt.Print(u.BackgroundBlue)
}
fmt.Printf(".%s", u.TextReset)
case cellStatusWall:
fmt.Print("█")
case cellStatusUnknown:
fmt.Print(" ")
}
}
fmt.Println()
}
}
func (d *Day15) markShortestPath() {
pos := d.goalPos
checkOffsets := []point{
{First: -1, Second: 0},
{First: 1, Second: 0},
{First: 0, Second: -1},
{First: 0, Second: 1},
}
checkPt := func(pt point) (bool, int) {
if v, exists := d.visited[pt]; exists && d.grid[pt] == cellStatusOpen {
return true, v.distanceFromStart
}
return false, math.MaxInt
}
d.shortestPath = []point{d.goalPos}
for pos.First != 0 || pos.Second != 0 {
lowestDist := math.MaxInt
lowestPoint := point{}
for _, pt := range checkOffsets {
newPt := point{First: pos.First + pt.First, Second: pos.Second + pt.Second}
if found, dist := checkPt(newPt); found && dist < lowestDist {
lowestDist = dist
lowestPoint = newPt
}
}
d.shortestPath = append(d.shortestPath, lowestPoint)
pos = lowestPoint
}
}
func (d *Day15) exploreFullMap() map[point]*visitedStatus {
grids := make([]map[point]cellStatus, 0, len(dirOrders))
goalVisited := d.visited
for _, dirOrder := range dirOrders {
d.program.Reset()
targetPos := point{}
nextDir := dirFirst
distFromStart := 0
d.pos = point{}
d.visited = map[point]*visitedStatus{
{First: 0, Second: 0}: {timesVisited: 1},
}
d.grid = map[point]cellStatus{
{First: 0, Second: 0}: cellStatusOpen,
}
d.program.RunIn(func(inputStep int) int64 {
var err error
nextDir, targetPos, err = d.getDirToNextCellType(d.pos, cellStatusUnknown, 0, dirOrder)
if err != nil {
// ensure we never try to go back into the trapped spot
d.visited[d.pos].timesVisited = maxVisited + 1
for x := 1; x <= maxVisited && err != nil; x++ {
nextDir, targetPos, err = d.getDirToNextCellType(d.pos, cellStatusOpen, x, dirOrder)
}
}
if err != nil {
// d.Draw()
// panic(err)
d.program.Stop()
}
return int64(nextDir)
}, func(val int64, state u.IntcodeProgramState) {
rVal := responseType(val)
p := d.getPointInDirection(d.pos, nextDir)
shouldMove := true
switch rVal {
case responseWall:
d.grid[p] = cellStatusWall
shouldMove = false
case responseSuccess:
d.grid[p] = cellStatusOpen
case responseFoundGoal:
d.grid[p] = cellStatusGoal
}
if shouldMove {
d.pos = targetPos
if d.visited[d.pos] == nil {
d.visited[d.pos] = &visitedStatus{}
distFromStart++
} else {
distFromStart--
}
d.visited[d.pos].timesVisited++
d.visited[d.pos].distanceFromStart = distFromStart
}
if rVal == responseFoundGoal {
// d.Draw()
d.goalPos = targetPos
goalVisited = d.visited
}
})
grids = append(grids, d.grid)
}
d.grid = map[point]cellStatus{
{First: 0, Second: 0}: cellStatusOpen,
}
for _, grid := range grids {
keys := u.MapKeys(grid)
for _, key := range keys {
d.grid[key] = grid[key]
}
}
return goalVisited
}
func (d *Day15) tagDistanceRecursive(pos, last point, dist int, distances map[point]int) {
distances[pos] = dist
for _, cell := range d.getAdjacentCellsOfType(pos, cellStatusOpen) {
if cell == last {
continue
}
d.tagDistanceRecursive(cell, pos, dist+1, distances)
}
}
func (d *Day15) Part1() string {
d.visited = d.exploreFullMap()
d.markShortestPath()
for _, visited := range d.visited {
visited.timesVisited = 1
}
d.pos = point{}
// d.Draw()
return fmt.Sprintf("Moves required to reach target: %s%d%s", u.TextBold, d.visited[d.goalPos].distanceFromStart, u.TextReset)
}
func (d *Day15) Part2() string {
startLoc := d.goalPos
distanceMap := map[point]int{startLoc: 0}
d.tagDistanceRecursive(startLoc, point{}, 0, distanceMap)
cellDistances := u.MapValues(distanceMap)
sort.Slice(cellDistances, func(i, j int) bool { return cellDistances[i] > cellDistances[j] })
return fmt.Sprintf("Time to fill the area with oxygen: %s%d%s minutes", u.TextBold, cellDistances[0], u.TextReset)
}